

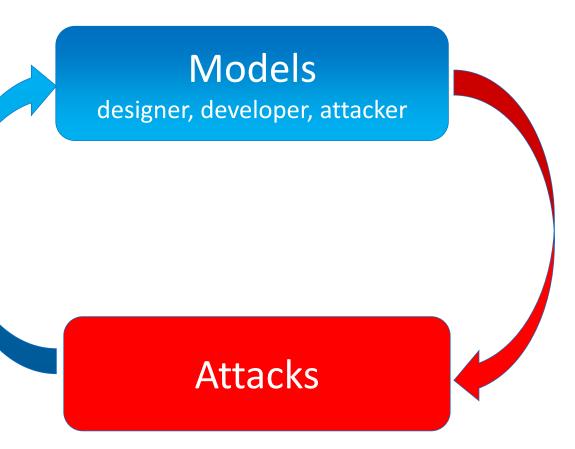
Northeastern University Khoury College of Computer Sciences

On the Security and Privacy of Wireless Systems: Threats and Some Defenses

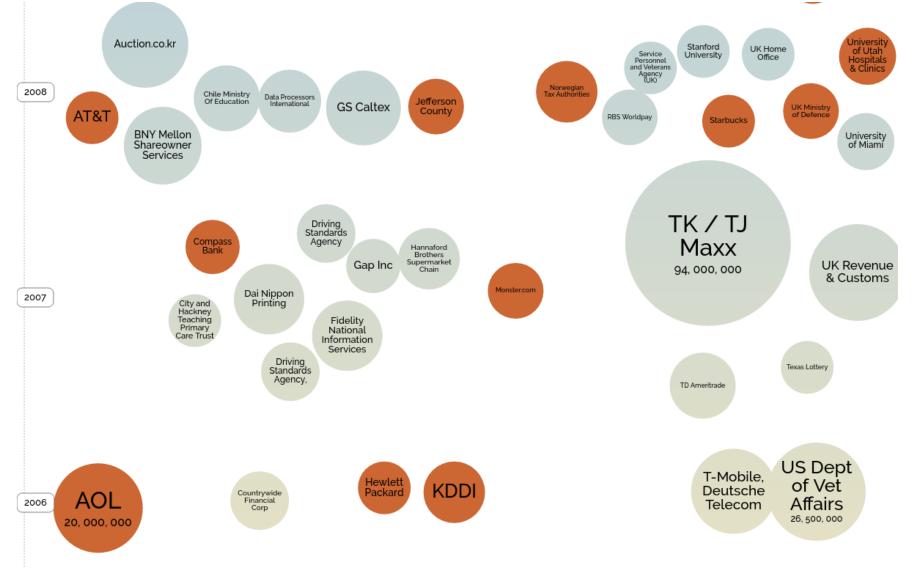
Guevara Noubir

Northeastern University

Boston Cloud Connect Summit

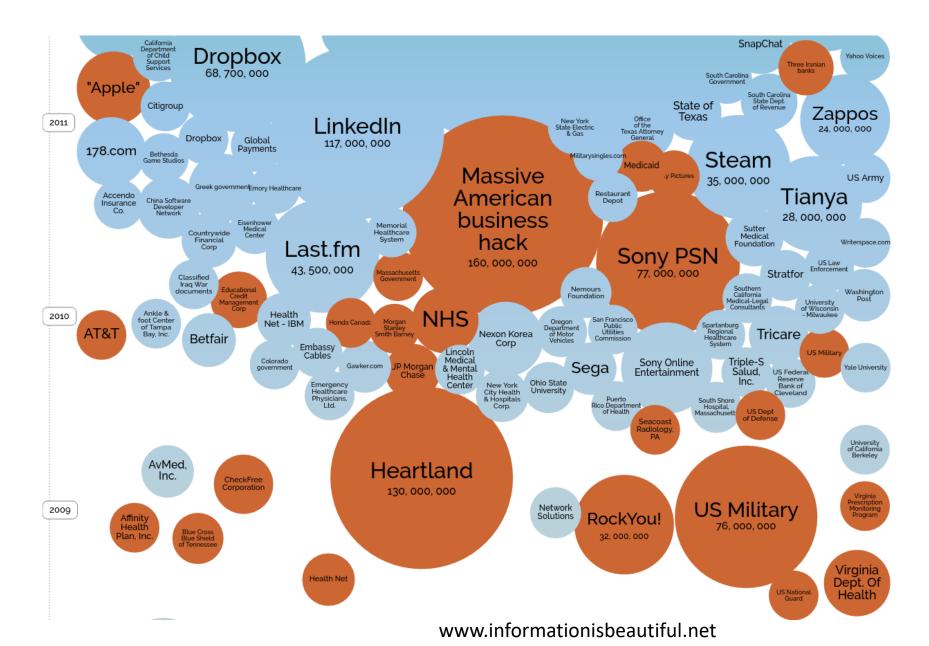

November 7, 2024

Outline

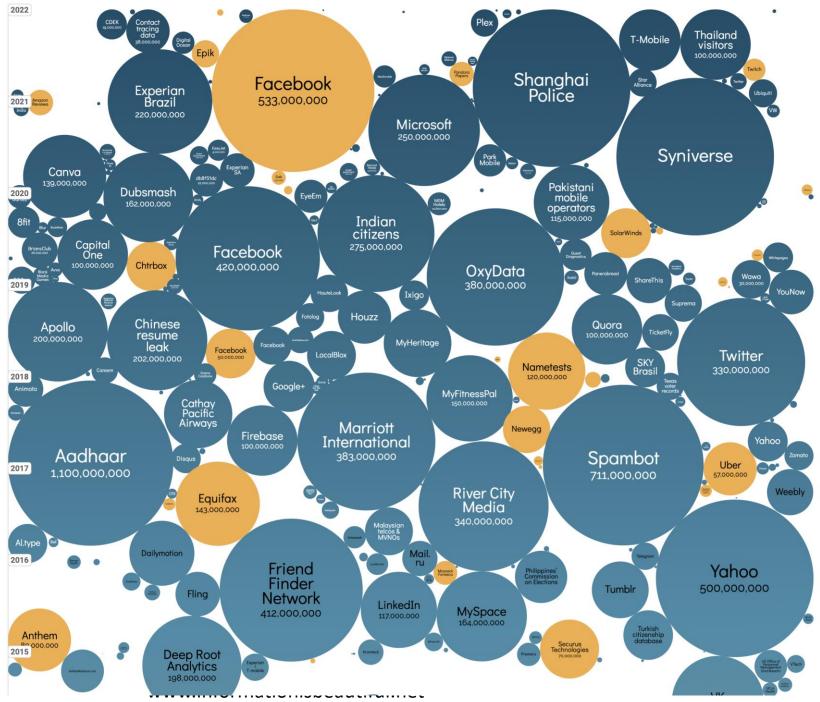

- Security Cycle: Academia vs. the Real-World
- Three examples of attack types
 - IoT devices
 - Mobile devices/apps: side-channels and zero permission attacks
 - Wireless systems: tracking, traffic analysis, MITM, and denial of service
- Discussion of threats and defenses

Security Cycle: Largely Reactive

- Model with assumptions, proof?
- "Attacker" escapes the model
 - and demonstrates feasibility of attacks
- Ideally a fix that accounts of potential future attacks
- Academia vs. industry
 - This cycle might project differently on the real world



Software Security: Data Breaches 2006 - 2008


www.informationisbeautiful.net

Software Security: Data Breaches 2009 - 2011

Routine Breaches

- Not all threats materialize
- Prevention is better than remediation

IoT, Mobile, and Wireless Systems?

• Ubiquitous and provide increasing opportunities for exploitations

• Uniquely exposed to side-channels attacks

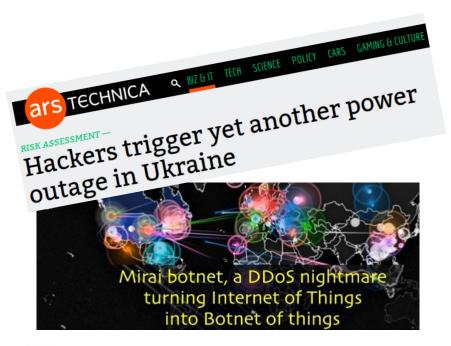
Threats of IoT Devices

- Proliferation of IoT devices
 - Home/enterprise appliances (IP phones/cameras, STB, smart speakers, locks, eReaders, digital signage, sockets), wearables, BYOD
- Connected, with sensing and actuation capabilities
 - Including Operational Technology assets
 - More and more self-driving cars, robots, toys, water systems
- Limited visibility on what they really do
 - Most IoT devices run on limited resources microcontrollers
 - Can be compromised and leveraged
- Limited visibility on how many there are
- What happens to them over time

Examples of Attacks/Findings

THE S IS FOR SECURITY

- Reverse engineering/analysis of smart speakers
 - Amazon Echo Dot, Google Home
 - Storage is not encrypted
 - Factory reset does not delete data (flash wear leveling)
- Study: bought/analyzed 86 devices (eBay)
 - Desoldered the flash (minutes)
 - 61% not reset
 - Even broken devices still contained personal data
 - Wi-Fi (SSID/Password); user's information, location;
- Ethical disclosure and privacy-preserving analysis
- "Amazon Echo Dot or the Reverberating Secrets of IoT Devices", ACM WiSec 2021


Thinking about selling your Echo Dot—or any IoT device? Read this first

Deleting data from Echo Dots—and other IoT devices from Amazon and elsewhere—is hard.

• Other issues

- Wake-up words, local vs. remote processing
- IoT devices upload various private information to the cloud
- Two ultra-sound sources can generate voice commands and manipulate smartspeakers stealthily (inaudible to humans)
- IoT Wi-Fi MIMO/CSI allows to see inside homes from a distance
- A camera can listen by analyzing small motion (e.g., bag of chips demo)

Lot of Potential Attacks (An Old Slide from 2017)

A university was attacked by its lightbulbs, vending machines and lamp posts

- Privacy Infrastructure
 - Tor Hidden Services
 - Bitcoin

The Romantik Seehotel Jäegerwirt 4-Star Superior Luxury Hotel was hit by a ransomware attack that locked guests in and out of the rooms.

Stuffed toys leak millions of voice recordings from kids and parents

IoT/OT Malware

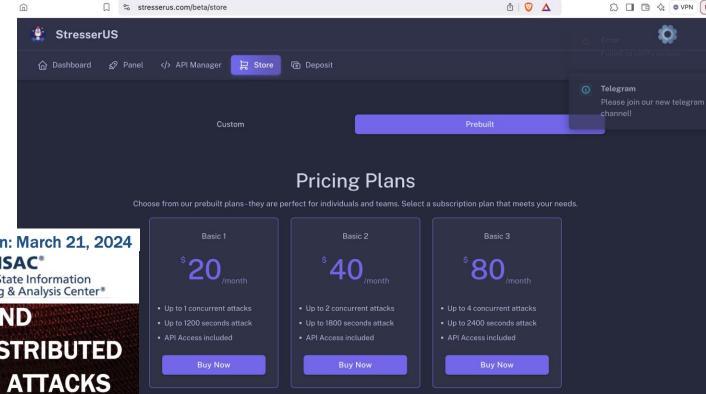
- Increasing threat
 - Zscaler reported a 400% growth in IoT malware attacks • (2023 Threat Report)
- Mirai is still around, with new variants •
 - NoaBot, Gafgyt, etc.
- Currently mostly exploit low hanging fruits
 - Default credentials, web interface, unpatched firmware ٠
 - Used to create bots for DDoS (Booter/Stresser)) ٠
 - Some monetization related to bot-as-a-service

Public Service Announcement

October 17, 2017 Alert Number I-101717b-PSA

Booter and Stresser Services Increase the Scale and Frequency of Service Attacks

Publication: March 21, 2024 **MS-ISAC® Multi-State Information** Sharing & Analysis Center®


UNDERSTANDING AND RESPONDING TO DISTRIBUTED DENIAL-OF-SERVICE ATTACKS

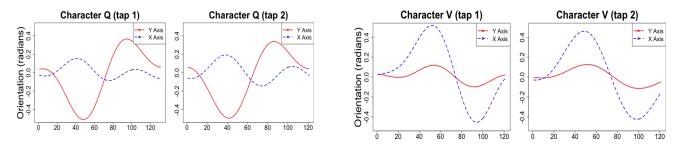
ars Technica

🙇 NEW WORM ON THE BLOCK

Linux devices are under attack by a never-before-seen worm

Based on Mirai malware, self-replicating NoaBot installs cryptomining app on infected devices. N GOODIN – JAN 10, 2024 11:12 AM | 🛑 60 |

Mobile Devices & Apps


Mobile Sensors for Side Channel Attacks

- Variety of sensors
 - Gyroscope, accelerometer, compass, microphone, cameras
- Malicious app can monitor other apps
- Some attacks
 - High accuracy keylogging
 - Location Tracking
 - Exfiltration

Mobile Sensors

- Gyroscopes
 - Sensitive to motion but not very noisy
 - Similar pattern for same keys and different for other keys on x/y axes
 - Does not work well for all keys, experiences drift, etc.

- Stereo-Microphones unique delay & amplitudes e.g., HTC One
 - Distance between microphones: 0.134 m
 - Maximum supported sampling rate: 48 KHz
 - Speed of sound in air: 340 m / s
 - Difference of +19 samples to -19 samples
- For future devices with higher sampling rate
 - Example sampling rate: 192 KHz
 - Difference of 2*75 samples for tap close to one microphone

Evaluation 2014

(Meta-Algorithm)

- Meta-Algorithm
 - Combines several signal processing & machine learning algorithms
 - Decompose keyboard
- Possible to achieve > 90% for QWERTY keyboard
- Possible to achieve > 95% for Number keyboard
- Some sample sets between 44-56%
 - Noise
 - Gyroscope Drift

User	Keyboard	Count	Gyro	Mics	Comb		
HTC One							
User1	Number	306	68%	93%	93%		
User2	Number	200	44%	94.5%	93%		
User3	Number	300	72%	91%	91%		
User4	Number	300	75%	94%	95.5%		
User5	Number	323	45%	83%	83%		
User3	QWERTY	782	80.5%	89.5%	94%		
User4	QWERTY	860	56%	83%	83%		
User5	QWERTY	877	66%	73.5%	84%		
Samsung S2							
User1	Number	137	75.5%	-	-		
User2	Number	542	84%	-	-		
User3	Number	202	83%	-	-		
User4	Number	200	81.5%	-	-		
User5	Number	512	81%	-	-		
User1	QWERTY	366	63.5%	-	-		
User2	QWERTY	620	77%	-	-		
User5	QWERTY	312	74%	-	-		

Attack Scenario

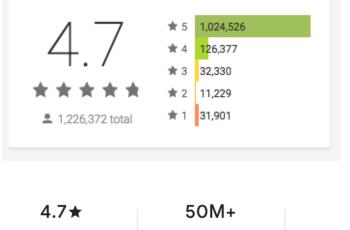
- Adversary lures victim to install Trojan app
 - e.g., 'To-do' app that supports speech recognition
- App records sensor data when user types in Trojan app
 - Builds training models from collected data
 - On the phone / On a central server
- App invokes service that waits for sensitive activity to start
 - e.g., targeted bank login page
- App records sensor data when sensitive activity
 - Generates predictions from sensitive data using training models

Evaluation of Keylogging

(End-to-End Attack)

- Collected on banking app with fake numbers
 - Every UI page is known as an activity
 - Trojan queries for the foreground activity every 5s
- 100 four digit PIN numbers
 - 376 out of 400 digits predicted correct (94%)
 - 84 predicted completely correct
- 100 sixteen digits Credit Card numbers
 - 1467 out of 1600 digit predicted correct (91.5%)
 - 52 predicted completely correct

Ξ	Passcode	
Croot	a	when you
sign	te your 4-digit Passcode to use in.	when you
		when you
		when you


Total	Correct	Correct Digits	Accuracy			
PINs						
100	84	376	94%			
Credit Cards						
100	52	1467	91.5%			

How malicious can a Flashlight App be?

FTC Approves Final Order Settling Charges Against Flashlight App Creator

https://www.ftc.gov/news-events/pressreleases/2014/04/ftc-approves-final-order-settling-chargesagainst-flashlight-app

Reviews

1.33M reviews

E

Evervone ①

Updated on

Jul 16, 2024

Brightest Flashlight Free ®

GoldenShores Technologies, LLC Free

Version 2.4.2 can access:

Location

- · approximate location (network-based)
- · precise location (GPS and network-based)

Photos/Media/Files

- · modify or delete the contents of your USB storage
- read the contents of your USB storage

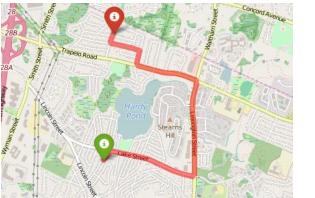
Camera

• take pictures and videos

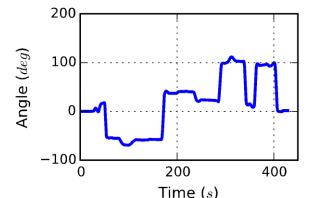
Device ID & call information

read phone status and identity

[?] Other

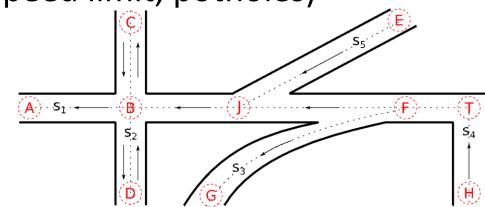

- disable or modify status bar
- read Home settings and shortcuts
- control flashlight
- prevent device from sleeping
- view network connections
- full network access
- install shortcuts
- uninstall shortcuts

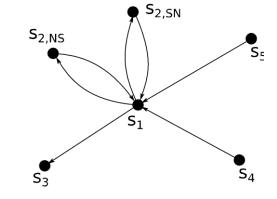
Zero Permissions Malicious Apps [S&P'2016]

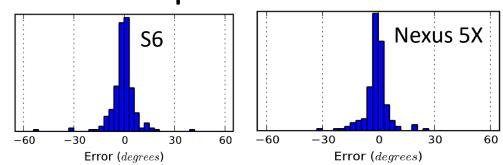

- Observation
 - No need to request permission for accelerometer, gyroscope, compass, barometer
 - Most Apps obtain Internet access
 - GPS/Location can be viewed as suspicious
- Can we infer?
 - Gender? Age? Health information?
 - Work location, home? Identity? Social circle?

Inferring Location Information

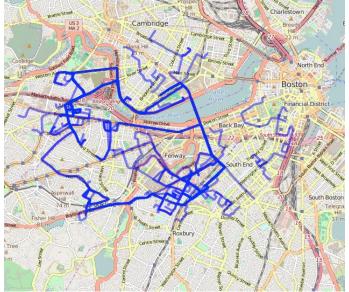
- Goal is not to build an Inertial Navigation System
 - Gyroscope is fairly accurate
 - Accelerometers and compass are noisy




- Collect sequence of turns
- Infer most likely trajectory

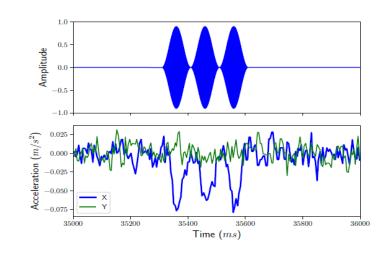

Inferring Location Information

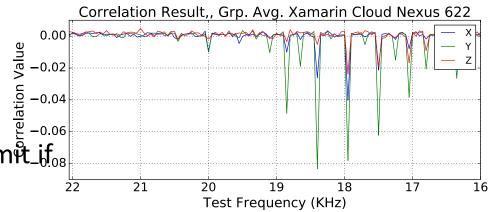
- Open Street Maps data => build a directed graph
 - enhance with road signature (curvature, compass headings, speed limit, potholes)



- Problem: finding maximum likelihood path
 - Error approx. by Gaussian but deletions

Techniques and Evaluation

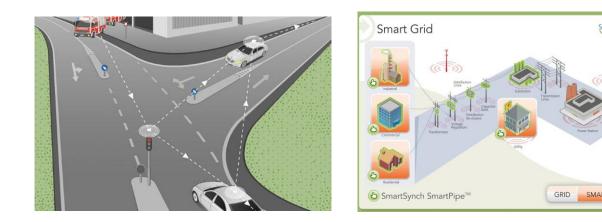

- Developed several techniques
 - Processing data (compensating gyroscope bias, eliminating idle time)
 - Maximum likelihood path incorporating gyroscope & compass, curvature, speed limit with simple assumption on turns distribution
- Evaluation
 - Simulation on 11 cities: prob > 50% to output path in top 10
 - Real experiments in Boston (30%) and Waltham (60%)
 - Better results for longer lists, longer paths

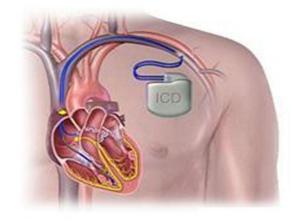


- Next steps: work-place, colleagues, sensitive locations, family
- Disclosed to Apple/Google
 - Now, Apps needs a permission to access sensors in the background

Covert Channels for Data Exfiltration

- Consider two mobile apps
 - App 1: Trusted with sensitive information but no communication, e.g., password manager, journal
 - App 2: Not given access to sensitive information but has access to the network, e.g., game
- Existence of stealthy cover channels
 - Source: permissionless speaker (ultrasonic signals)
 - Receiver: permissionless accelerometer
- Channel characteristics
 - Multiple bands unique to device
 - Axis are independent enabling MIMO
 - Source gets the received data and can code/retransmit <u>if</u> necessary




Wireless Systems

Bluetooth, 5G Avionics, (privacy-preserving) BLE, Wi-Fi

Wireless is Ubiquitous

- Beyond mobile devices (cellular, Wi-Fi, Bluetooth)
 - Transportation systems
 - Smart grid (power plants sync, smart meters)
 - Implantable devices
 - Avionics: ADS-B, GPS, ILS, ACARS, TCAS,
- Its security and robustness are critical for a variety of applications

Wireless is Ubiquitous

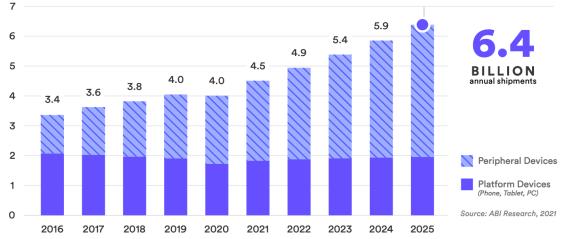
It is also used in harmful applications Jamming, IEDs, drones, etc.

Wireless systems Characteristics

- Unique characteristics with fundamental constraints
 - Broadcast medium
 - RF spectrum
 - Energy
- Limited resources led to complex designs and optimizations but also weaknesses & leakage
- Softwarization of wireless systems: SDR, libraries, protocols stacks, etc.
- Over the years we demonstrated several attacks (and defenses) against wireless systems
 - 3GPP, AWDL, Bluetooth, Wi-Fi, ILS, ACARS

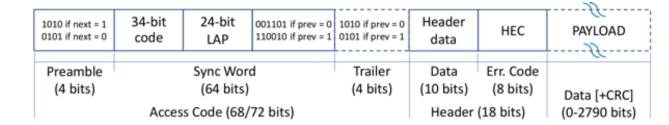
Changing Landscape in Wireless Systems

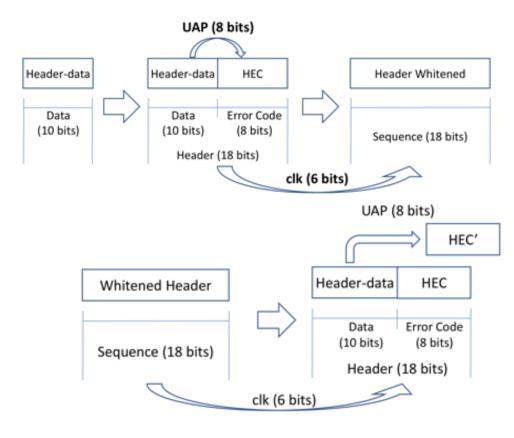
- Security assumptions are increasingly disproved:
 - Wireless systems are too complex for common adversaries
 - Attacks are impractical e.g., adversary has to be local
 - Adversary needs to operate over a wide spectrum
 - Adversary needs to operate in real time
 - Why would someone do this?
 - Adversary will not dare and will be caught


Bluetooth Tracking

Bluetooth Privacy

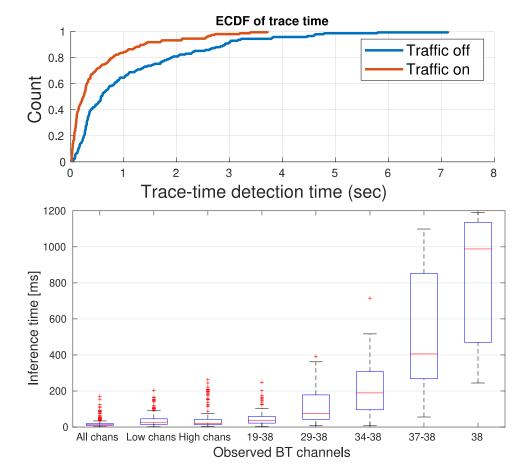
- Tracking in wireless systems
 - Tracking has always been a concern
 - 3GPP 2G-5G gradually improved privacy
 - Wi-Fi (Apple & Google) introduced MAC address randomization in 2014
 - Bluetooth was believed to be secure against tracking
- Bluetooth is increasingly ubiquitous
 - Phones, wearables, cars, headsets, IoT
- Bluetooth 5 covers multiple physical layers
 - Fairly clear distinction between Bluetooth Classic and Bluetooth Low Energy (BLE)
- BLE is the basis for most privacy-preserving contact tracing apps


Total Annual Bluetooth® Device Shipments


NUMBERS IN BILLIONS

Bluetooth Classic

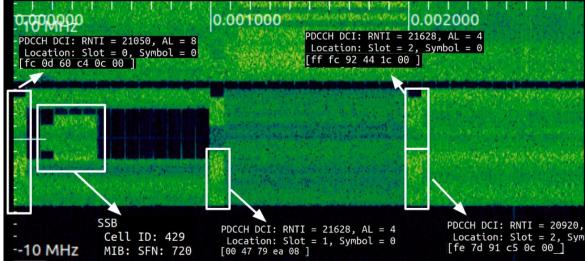
- For many years believed to be immune to tracking
- Why?
 - 48 bits MAC address (BDADDR) never fully transmitted in clear (unlike Wi-Fi)
 - MAC address is whitened with clock info
 - Hops 1600/second 79 channels (79 MHz)
 - 3000 pages standard



 $wh = [hd_i \mid \operatorname{HEC}(hd_i, u_i)] \oplus \operatorname{w}(clk_i),$

Bluetooth Classic Tracking [S&P 2020]

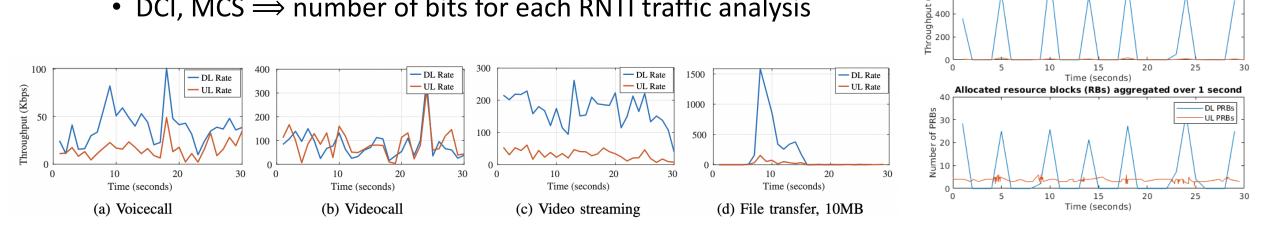
- Algorithms & SDR system
- Reveals the BDADDR in almost any setup
- Experimental evaluation
 - 80% in < 1 second; 100% in < 4 seconds
 - Up to 85 meters away
 - With streaming or idle
 - Cars, headsets, etc.
- Attack can be implemented on some phones
 - Nexmon framework leveraging the Wi-Fi chipset as SDR ...
- It is possible to track virtually every person/vehicle
 - and discover interesting other patterns
- Follow-up work: BLE linkage to BTC
 - BLE privacy-preserving apps are not secure


3GPP 5G Security

Security Analysis of 3GPP 5G [2020-2024]

- 2G 4G have various vulnerabilities
 - DoS, tracking
- 5G introduced new privacy mechanisms and considered for use by DoD
 - Analysis of security and privacy (US ONR funded project)
 - Leakage from signaling e.g., PSS, SSS, PBCH (MIB)
 - Broadcast constant values, predictable values, predictably repeating values
 - Several attacks identified, evaluated and demonstrated
 - Significantly more efficient than naïve attacks
 - Exposure: 10s of dB gains to a smart adversary (miles away)
 - MIB: no encryption/integrity ability to over-shadow at power < legitimate signal (~5dB)
 - DoS: smart-jamming, but also cross-layer e.g., set cellBarred bit
 - Traffic analysis
 - Key-point of entry for other attacks
 - Rogue infrastructure; multiple denial of service attacks (disappearance of networks, cell barring, redirection to other parts of the spectrum spoofing other signaling e.g., SIB), tracking

From 5G Sniffing to Harvesting Information Leakage [S&P 2023]


- 5G introduced a SUCI to limit tracking
- 5G control channels leak info
 - Existence of UEs, location,
 - Characteristics of traffic

- 5G Sniffing is in principle more challenging than LTE
 - Sniffing is different from decoding traffic
 - Naïve sniffer brute force 44 bits and has a very high false positives rate
 - Multiple DCIs each sub-frame (1ms)
- Vulnerabilities in 5G and optimization techniques enabled us to develop a real time sniffer 5GSniffer
 - SSB info (PSS, SSS, MIB), SIB1, but most importantly the PDCCH (DCI/RNTI)
- 5GSniffer + vulnerabilities in privacy-focused messengers (Signal and Telegram) ⇒ presence of phone (#), traffic analysis

5G Sniffer Enables Traffic Analysis

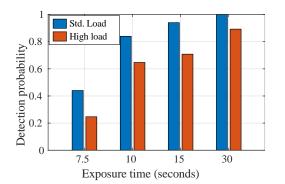
- Enables retrieval of
 - RNTI in real-time
 - DCI, MCS \implies number of bits for each RNTI traffic analysis

 But 5G introduced the SUCI, prevents reuse TMSI, releases RNTI if inactive for 10-30s

 \Rightarrow prevents exposure of long-term user identifiers

Measured Data Rate per second

DL throughput (Kbps) UL throughput (Kbps)

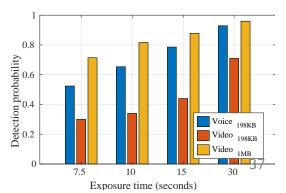

(SddX) 009 (Kbps)

5G Sniffing: Exposing Presence of Users of Signal/Telegram Users Internet

- Adversary sends *stealthy messages* to target phone number
- Stealthy messages exploit Apps vulnerabilities
 - Corrupted cryptographic MAC, padding up to 196KB (Signal) or 65K (Telegram)
 - A RNTIs do not last for long Maintaining an RRC connection filters most RNTIs • Telegram also has disable_notification flags and remote deletion of messages
- Most RNTIs do not last for long

- It is possible to achieve nearly 100% exposure of target within 30 seconds
 - Over the air experiments (targeted our own devices)
 - Attack is highly accurate even with high network load, and when target had a video call
- Proposed mitigations
 - And disclosed to Signal & Telegram

 10 am - 12 pm 5 pm - 11 pm


25

10

Active RNTI Time (seconds)

15

20

Finals Remarks (I): Does It Matter?

- IoT/Mobile/Wireless Systems provide unique opportunities for attacks
 - Ubiquity, sensing, actuation capabilities
 - Inertia, limited resources and difficulty to update
 - Security mechanisms not always user friendly
- Academia can be creative, but does it matter in the real-world?
 - Incentives: monetization vs. cyberwarfare, industrial espionage
 - Privacy-preserving infrastructure (e.g., Tor, Bitcoin) make it easy to get away with it
 - Serious threat from nation-state actors
- Why does it matter for industry/companies?
 - Can be used to collect information and enable targeted attacks
 - Can be used to launch attacks inside/outside

Final Remarks (II): Defenses

- Awareness
 - Assume that motivated attackers know everything about you so any message you receive could be malicious, yet look authentic
- Best practices: prevention, tolerance, detection, mitigation
 - Inventory, only use devices that can be adequately managed/updated
 - Segregate devices/networks (e.g., separate SSID/VLANs for IoT)
 - Scan network/RF spectrum: all devices/comms should be accounted for
 - Remove any device/app not necessary
 - Only allow encrypted traffic, between authorized endpoints
 - Remove incentives: backups, fast recovery mechanisms, controlled diversity of devices (lot of Arm, Xtensa cores)
 - Legal mechanisms
- Defense-in-depth

BLUETOOTH